IBM Mainframes – 45 Years of Evolution

Jim Elliott
Consulting Sales Specialist – System z
IBM Canada Ltd.
Reports of the death of the mainframe were premature

- “I predict that the last mainframe will be unplugged on March 15, 1996.”
 – Stewart Alsop, March 1991
- “It’s clear that corporate customers still like to have centrally controlled, very predictable, reliable computing systems – exactly the kind of systems that IBM specializes in.”
 – Stewart Alsop, February 2002

Source: IBM Annual Report 2001
In the Beginning
The First Two Generations
The family tree – 1952 to 1964

- Several mainframe families announced, designed for different applications
- Every family had a different, incompatible architecture
- Within families, moving from one generation to the next was a migration
 - Common compilers made migration easier – COBOL and FORTRAN
IBM 701 – 1952
1st generation

- The first IBM large-scale electronic computer manufactured in quantity
- IBM's first commercially available scientific computer
- The first IBM machine in which programs were stored in an internal, addressable, electronic memory
- The first of the pioneering line of IBM 700 series computers, including the 702 through 709
IBM 305 RAMAC – 1956

1st generation

- The first computer to include a disk drive (named the IBM 350 Disk File)
- Prior to this magnetic computer storage had consisted of core memory, tape, and drums
- The 350 Disk File consisted of a stack of fifty 24” discs
- The capacity of the entire disk file was 5 million 7-bit characters, which works out to about 4.4 MB in modern parlance
The all-transistorized IBM 1401 Data Processing System placed the features found in electronic data processing systems at the disposal of smaller businesses, previously limited to the use of conventional punched card equipment.

These features included: high speed card punching and reading, magnetic tape input and output, high speed printing, stored program, and arithmetic and logical ability.
IBM 1440 – 1962
2nd generation

- Low-cost system specifically designed to solve the increasing data handling problems of smaller volume businesses
- The 1440 met the need for a complete accounting system and offered the benefits of a business information system
- With a variety of models and special features available for the 1440, a system could be tailored to meet immediate data processing requirements and expanded to absorb increased demands
IBM 7094 – 1962
2nd generation

- Built for large-scale scientific computing
- Compatible with the IBM 7090, the advanced solid-state IBM 7094 offered substantial increases in internal operating speeds and functional capacities
- New expanded functions provided with the IBM 7094 were: double-precision floating-point operations and seven index registers
The April 1964 Revolution
3rd generation
During the 1950s, Data Processing came of age

- Data Processing machines existed – sorters, collators, tabulators
- "Computers" were devoted almost entirely to the processing of computationally intensive tasks
- Demand for computers, as data processing machines, boomed and new machines were built to meet this demand
- Customers were getting very frustrated with migration costs that came with processor upgrades
“[System/360] was the biggest, riskiest decision I ever made, and I agonized about it for weeks, but deep down I believed there was nothing IBM couldn't do.”

Father, Son & Co. 1990
Tom Watson, Jr.
IBM President, 1962
IBM President and CEO 1966
IBM Chairman and CEO 1961-1971
System/360 – Announced April 7, 1964

- IBM decided to implement a wholly new architecture specifically designed both for data processing and to be compatible across a wide range of performance levels.
- IBM invested $5B to develop a family of five increasingly powerful computers that run the same operating systems and can use the same 44 peripheral devices with the same architecture.
 - 24-bit addressing (32-bit architecture).
 - Solid logic circuit cards.
System/360 – a child is born

Hardware
- One main storage, maximum size is 16MB
- One or two Central Processing Units (CPUs)
- One to seven Channels
 - Selector or Byte Multiplexor
 - Block Multiplexor
- Control Units (which connect to Channels)
- Devices (which connect to Control Units)

Family of operating systems
- Operating System/360 (OS/360)
- Disk Operating System/360 (DOS/360)
- Tape Operating System (TOS)
- Basic Programming Support (BPS)
- Airlines Control Program (ACP)
Core Memory
S/360 family

<table>
<thead>
<tr>
<th>Model</th>
<th>Announced</th>
<th>First Shipped</th>
<th>Additional Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>April 7, 1964</td>
<td>June, 1965</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>April 7, 1964</td>
<td>April, 1965</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>April 7, 1964</td>
<td>August, 1965</td>
<td></td>
</tr>
<tr>
<td>20*</td>
<td>November 18, 1964</td>
<td>April, 1966</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>April 22, 1965</td>
<td>November, 1965</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>April 22, 1965</td>
<td>January, 1966</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>August 16, 1965</td>
<td>June, 1966</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>August 16, 1965</td>
<td>May, 1966</td>
<td>Virtual storage</td>
</tr>
<tr>
<td>91</td>
<td>January 18, 1966</td>
<td>October, 1967</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>January 30, 1968</td>
<td>December, 1969</td>
<td>High speed cache</td>
</tr>
<tr>
<td>195</td>
<td>August 20, 1969</td>
<td>March, 1971</td>
<td></td>
</tr>
</tbody>
</table>
System/360 Model 20
1966

- Special purpose “entry level” S/360
- 24K of core memory
- Half the registers of other models
- Instruction set that was not binary-compatible with the rest of the S/360 family
- Popular as an RJE workstation
System/360 Model 67

- **First IBM system with virtual storage capabilities**
 - S/360 Model 65 with addition of the Dynamic Address Translation facility
- **Operating systems**
 - Time Sharing System – The “official” operating system from IBM Data Systems Division
 - Control Program/67 with the Cambridge Monitor System – The “unofficial” operating system from the IBM Cambridge Scientific Center
System/370 – Announced June 30, 1970

- Compatible upgrade from S/360
- 370 Model 145 is the first computer with fully integrated monolithic memory (circuits in which all of the same elements – resistors, capacitors and diodes – are fabricated on a single slice of silicon) and 128-bit bi-polar chips
- New peripherals
 - 3330/3340/3350 disk
 - 3211 printer

"We are confident that the performance of System/370, its compatibility, its engineering and its programming will make it stand out as the landmark for the 1970s that System/360 was for the Sixties."

Tom Watson, Jr.
IBM Chairman and CEO
1961-1971
System/370 with Virtual Storage – Announced August 2, 1972

- Compatible upgrade from S/370 with virtual storage
- First multiprocessor models (158MP, 168MP)
- Family of operating systems
 - OS/360 ➔ OS/VS
 - DOS/360 ➔ DOS/VS
 - CP/67 ➔ VM/370
S/370 – the architecture matures

- **Virtual storage**
 - 2KB or 4KB pages of memory
 - 64KB or 1MB segment sizes
 - Translation of virtual addresses to real addresses using Dynamic Address Translation (DAT) logic
 - Segment tables point to page locations

- **Channel architecture**
 - 256 channels

- **CPU changes**
 - Extended MP support via CPU address
S/370 family

<table>
<thead>
<tr>
<th>Model</th>
<th>Announced</th>
<th>First Shipped</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>June 30, 1970</td>
<td>January, 1971</td>
<td>158</td>
</tr>
<tr>
<td>165</td>
<td>June 30, 1970</td>
<td>April, 1971</td>
<td>168</td>
</tr>
<tr>
<td>195</td>
<td>June 30, 1970</td>
<td>August, 1973</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>September 23, 1970</td>
<td>June, 1971</td>
<td>148</td>
</tr>
<tr>
<td>135</td>
<td>March 8, 1971</td>
<td>April, 1972</td>
<td>138</td>
</tr>
<tr>
<td>158</td>
<td>August 2, 1972</td>
<td>April, 1973</td>
<td>3031</td>
</tr>
<tr>
<td>168</td>
<td>August 2, 1972</td>
<td>May, 1973</td>
<td>3033</td>
</tr>
<tr>
<td>125</td>
<td>October 4, 1972</td>
<td>April, 1973</td>
<td>4331/4361</td>
</tr>
<tr>
<td>115</td>
<td>March 13, 1973</td>
<td>March, 1974</td>
<td>4331/4361</td>
</tr>
<tr>
<td>138</td>
<td>June 30, 1976</td>
<td>November, 1976</td>
<td>4341/4381</td>
</tr>
</tbody>
</table>
System/370 with Extended Architecture

- **Evolution of S/370**
- **3081 introduced Thermal Conduction Modules**
- **New peripherals**
 - 3800 page printer
 - 3370/3380 disk
 - 3480 tape
- **Family of operating systems**
 - OS/VS ➔ MVS/SP ➔ MVS/XA
 - DOS/VS ➔ VSE/SP
 - VM/370 ➔ VM/SP, VM/SP HPO
 - VM/370 ➔ VM/XA MA ➔ VM/XA SF ➔ VM/XA SP
370-XA – radical surgery for the architecture

- **Extended storage addressing**
 - 24-bit or 31-bit addressing
 - 4KB pages in 1MB segments

- **Interpretive execution facility**
 - Start Interpretive Execution (SIE) instruction
 - SIE runs until interception condition raised
 - Used by VM/XA
 - Multiple High Performance Guest Support Facility (MHPGSF) to support V=F guests on VM/XA SP
 - Rename Processor Resource/Systems Manager (PR/SM) when Logical Partitions (LPAR) announced

- **370-XA channel design**
 - CHPIDs
 - Subchannels
System/370 with Enterprise Systems Architecture

- **Extension of 370-XA**
 - Expanded Storage
 - Multiple 31-bit address spaces

- **Common set of peripheral devices**
 - 3390 disk
 - 3490 tape

- **Family of operating systems**
 - MVS/XA ➔ MVS/ESA
 - VSE/SP ➔ VSE/ESA
 - VM/XA SP ➔ VM/ESA

3090
System/390 with Enterprise Systems Architecture – Announced September 1990

- Evolution of ESA/370
- 1994 – S/390 Parallel Transaction Server
 - Family of CMOS processors
- 1998 – System/390 Generation 5 server – more than 1,000 MIPS
- 1999 – System/390 Generation 6 server – copper chip technology
- Common set of peripheral devices
 - RAMAC, Enterprise Storage Subsystem disk
 - 3590 Magstar tape
- Family of operating systems
 - MVS/ESA → OS/390
 - VSE/ESA
 - VM/ESA
 - Linux for S/390 (December 1999)
S/370 to ES/9000 evolution

<table>
<thead>
<tr>
<th>115/125</th>
<th>138/148</th>
<th>158/168</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼</td>
<td>▼</td>
<td>▼</td>
</tr>
<tr>
<td>4331 → 4321</td>
<td>4341</td>
<td>3031/3032/3033</td>
</tr>
<tr>
<td>▼</td>
<td>▼</td>
<td>▼</td>
</tr>
<tr>
<td>4361</td>
<td>4381</td>
<td>3081/3083/3084</td>
</tr>
<tr>
<td>▼</td>
<td>▼</td>
<td>▼</td>
</tr>
<tr>
<td>9370</td>
<td>4381-E</td>
<td>3090</td>
</tr>
<tr>
<td>▼ upgrade</td>
<td>▼</td>
<td>▼ upgrade</td>
</tr>
<tr>
<td>9221</td>
<td>9121</td>
<td>9021</td>
</tr>
</tbody>
</table>
Parallel Transaction Server to G6

<table>
<thead>
<tr>
<th>Date</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994-04-06</td>
<td>9672-Enn, 9672-Pnn</td>
<td>Parallel Transaction Server</td>
</tr>
<tr>
<td>1994-09-13</td>
<td>9672-Rn1</td>
<td>Parallel Enterprise Server</td>
</tr>
<tr>
<td>1995-06-12</td>
<td>9672-Rn2, 9672-Rn3</td>
<td></td>
</tr>
<tr>
<td>1996-09-10</td>
<td>9672-Rn4</td>
<td>G3</td>
</tr>
<tr>
<td>1996-09-10</td>
<td>2003</td>
<td>Multiprise 2000</td>
</tr>
<tr>
<td>1997-06-09</td>
<td>9672-Rn5</td>
<td>G4</td>
</tr>
<tr>
<td>1998-06-23</td>
<td>9672-nn6</td>
<td>G5</td>
</tr>
<tr>
<td>1999-09-20</td>
<td>7060</td>
<td>Multiprise 3000</td>
</tr>
<tr>
<td>1999-05-03</td>
<td>9672-nn7</td>
<td>G6</td>
</tr>
</tbody>
</table>

Multiprise 3000
zSeries with z/Architecture – Announced October 2000

- **Evolution of ESA-390**
 - 24-bit, 31-bit, and 64-bit addressing supported concurrently
 - z900 – up to 16 processors
 - z800 – up to 4 processors
 - Linux-only model in January 2002
 - General purpose model in February 2002
 - Integrated Facility for Linux on z900/z890

- **Family of operating systems**
 - OS/390 → z/OS
 - VSE/ESA → z/VSE
 - VM/ESA → z/VM
 - TPF → z/TPF
 - Linux for S/390 → Linux for zSeries
zSeries Enhanced

- **May 2003**
 - z990 – up to 32 processors – configurable as CPs, IFLs, SAPs
 - Up to 256GB memory

- **October 2003**
 - The Mainframe Charter

- **April 2004**
 - z890 – up to 4 configurable processors
 - zSeries Application Assist Processor

- **October 2004**
 - Crypto Express 2

- **January 2005**
 - FICON Express 2
System z9 EC – Announced July 26, 2005

- Strengthening the role of the mainframe as the data hub of the enterprise
- New versatile capacity settings designed to optimize capacity and cost
- IBM System z9 Integrated Information Processor (IBM zIIP) is designed to improve resource optimization and lower the cost of eligible work
- Continued improvement in IBM FICON performance and throughput
- On demand innovative technologies to help meet ever-changing business demands
System z9 BC – Announced April 27, 2006

- IBM System z9 technology, for entry level to midsize capacity needs, with a wide choice of capacity settings and highly granular growth options, an increase of 2.6 times more capacity settings than zSeries z890
- A broad set of specialty engines to facilitate integration of many types of workloads and fully leverage the power of the mainframe
- Helps protect client’s investments in mainframe technologies with upgradeability from z890 and z800 servers
- Key System z9 features of advanced security, resiliency, virtualization and connectivity technologies delivered in a midrange package
System z10 EC – Announced February 26, 2008

- Unprecedented capacity and virtualization to meet consolidation needs
- Improvements connecting to data and the network can help provide faster access to data
- Just-In-Time deployment of resources
- Specialty engines offer an attractive alternative when running new workloads
- Enhanced accuracy to a time External Time Source
System z10 BC – Announced October 21, 2008

- Industry leading combination of System z10 security, resiliency, virtualization and connectivity technologies packaged specifically as a midrange enterprise solution
- Specialty engines offer an attractive alternative when running new workloads
- Save energy via consolidation of disparate workloads and reduce costs via virtualization capabilities for more efficient resource sharing
- Enables future growth—as a modern platform for a growing portfolio of business solutions
- Up to 50% more performance at half the price for incremental Linux workloads compared to the System z9 BC
IBM System z: Balanced Systems Design

System I/O Bandwidth

- 288 GB/sec*
- 172.8 GB/sec*
- 96 GB/sec
- 24 GB/sec
- 16-way
- 32-way
- 54-way
- 64-way

Memory
- 1.5 TB**

Balanced System
CPU, nWay, Memory, I/O Bandwidth

ITR for 1-way
- ~600
- ~920

*Servers exploit a subset of its designed I/O capability
** Up to 1 TB per LPAR
9672-G5 to eServer zSeries to System z10

<table>
<thead>
<tr>
<th>Date</th>
<th>Code</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998-06-23</td>
<td>9672-nn6</td>
<td>G5</td>
</tr>
<tr>
<td>1999-05-03</td>
<td>9672-nn7</td>
<td>G6</td>
</tr>
<tr>
<td>2000-10-03</td>
<td>2064-1nn</td>
<td>z900</td>
</tr>
<tr>
<td>2002-04-30</td>
<td>2064-2Cn</td>
<td>z900 Turbo</td>
</tr>
<tr>
<td>2009-01-29</td>
<td>2006-0FL</td>
<td>z800 Linux only model</td>
</tr>
<tr>
<td>2002-02-19</td>
<td>2066</td>
<td>z800</td>
</tr>
<tr>
<td>2003-05-13</td>
<td>2084</td>
<td>z990</td>
</tr>
<tr>
<td>2004-04-07</td>
<td>2086</td>
<td>z890</td>
</tr>
<tr>
<td>2005-07-26</td>
<td>2094</td>
<td>System z9 EC (originally System z9 109)</td>
</tr>
<tr>
<td>2006-04-27</td>
<td>2096</td>
<td>System z9 BC</td>
</tr>
<tr>
<td>2008-02-26</td>
<td>2097</td>
<td>System z10 EC</td>
</tr>
<tr>
<td>2008-10-21</td>
<td>2098</td>
<td>System z10 BC</td>
</tr>
</tbody>
</table>
April 7, 2009 – The 45th Anniversary!
April 7, 2004 – The 40th Anniversary!

System/360 and the new world of on demand business

The 360 Revolution
Chuck Boyer
Commemorating 45 Years of Market Leadership

Mainframe: The World's Most Trusted Server
Summary

- From System/360 in 1964 to today’s System z and zSeries, we have seen an evolution that has preserved customer investments in a unique way.
- From OS/360 to MVS to OS/390 to z/OS, we have seen an evolution of the operating system that is core to most corporate IT environments.
- From DOS/360 to VSE/ESA to z/VSE, we have seen this operating system thrive meeting the needs in smaller environments.
- From CP/67 as a research project and VM/370 as a migration tool, VM has evolved to today’s z/VM as the core of IBM’s zSeries virtualization technology.
- And now with Linux on System z, we have a truly open operating environment.

“Legacy systems are systems that work!”
Bibliography

- **Melinda Varian, Princeton**
 - “VM and the VM Community: Past, Present, and Future” presented at SHARE 89, 1997
- **Jeff Gribbin, EDS UK**
 - “Development of 360/370 Architecture – A Plain Man’s View”, 1989
- **Chuck Boyer**
 - “The 360 Revolution”, 2004 available at
- **IBM Archives: Valuable resources on IBM’s history**
 - http://www.ibm.com/ibm/history/
- **IBM Systems Journal**
 - “VM/370–a study of multiplicity and usefulness”
 L H Seawright and R A MacKinnon, Volume 18, Number 1, 1979
 - Evolution of a virtual machine subsystem
 E C Hendricks and T C Hartmann, Volume 18, Number 1, 1979
 - “ESA/390 interpretive-execution architecture, foundation for VM/ESA”
 D L Osisek, K M Jackson, and P H Gum, Volume 30, Number 1, 1991
- **IBM Journal of Research and Development**
 - “The Origin of the VM/370 Time-Sharing System”
 R J Creasy, Volume 25, Number 5, 1981
Notices

© Copyright IBM Corporation 2000, 2009. All rights reserved.
This document contains words and/or phrases that are trademarks or registered trademarks of the International Business Machines Corporation in the United States and/or other countries. For information on IBM trademarks go to http://www.ibm.com/legal/copytrade.shtml.
The following are trademarks or registered trademarks of other companies.
 Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
 UNIX is a registered trademark of The Open Group in the United States and other countries.
 Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
 Red Hat, the Red Hat "Shadow Man" logo, and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc., in the United States and other countries.
 Linux is a trademark of Linus Torvalds in the United States, other countries, or both.
All other products may be trademarks or registered trademarks of their respective companies.

Notes:
This publication was produced in Canada. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.